'
L
LAy
Sy )

3 \er
() (4 ) LA
A A0
. n:.:‘:: O
AN
.

e

<A NVIDIA.

L)

s

-hlhh\

'y

LA L) LR
LR
“SEEER R RN RPN
O

' (R R FFERERERN DY

A

RSN U
'y Yy
Y Yy
ALY Y Yy
YAy
AR AR RS
PRV
AR LR LR AR)
.,,.‘44444:,,,,,
LA RERY AR h
AL LA AR RL AR
Yy 'y \
) ) vy
RRSAA LA n 7p)
...4,a¢‘,;..
AL A AN
..,..4«4.,,_
N ) 'y
AL LAVU | -
A
_ o
4 W



Exercise

Today we have a progressive exercise
* The exercise is broken into 5 steps

If you get lost you can always catch up by grabbing the
corresponding directory

* If you need to peak at the solution for each step it is found in the
directory named “solution”

* To start make a copy of the stepl directory
* We will now review the code



Case Study: Matrix Transpose

void transpose(float in[][], float out[][], int N)
{
for(int j=0; j < N; j++)
for(int i=0; i1 < N; i++)
out[j]1[i] = in[i][j];

}

= Commonly used in applications
= BLAS and FFT

= Stresses memory systems
= Strided reads or writes




2D to 1D indexing

void transpose(float in[], float out[], int N)
{
for(int j=0; j < N; Jj++) i
for(int i=0; i < N; i++4)
out[i*N+]j] = in[j*N+i];

= This indexing is often used in 3
numerical codes

= We will use this indexing during this
presentation




Parallelization for CPU

void transpose(float in[], float out[], int N)
{
#pragma omp parallel for
for(int j=0; j < N; j++)
#pragma omp parallel for
for(int i=0; i < N; i++4)
out[i*N+j] = in[j*N+i];

%> export OMP NUM THREADS=16
%> aprun -n 1 -d 16 ./transpose



Exercise: Compile with NVCC

Modify make file to build with nvcc
For CUDA filenames must end in .cu
Specify architecture
—arch=sm_35
Pass an argument to the host compiler using —Xcompiler
-Xcompiler -fopenmp

Recompile and run
%> module load cudatoolkit

%> make clean

)

%> make
%> aprun -n 1 -d 16 ./transpose

Notice nvcc can build CPU only applications
It actually passes host code through to the host compiler

L)

»



Exercise;: Add CUDA APIs

Search for “TODO” and fill in cuda code

Start with the host code

Create separate pointers for CUDA memory
Allocate & free memory device memory
* cudaMalloc(**ptr, size_t size)
® cudaFree(*ptr)
¢ Copy data between CPU and GPU
¢ cudaMemcpy(*dst, *src, size t size, cudaMemcpyKind)
¢ cudaMemcpyKind: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
# Synchronize the device to ensure timing is correct
¢ cudaDeviceSynchronize()
¢ Pass device pointers into transpose function



Exercise: Write Our First Kernel

® Create transpose kernel 3
® _ global says this is a kernel

* Parallelize over rows
¢ 1thread per row

* Replace outer loop with index
calculation

¢ 1D indexing J
— blockDim.x*blockldx.x+threadldx.x
¢ Launch kernel
® <<<gridDim,blockDim>>>
* blockDim = 256 threads




Results

* Initial implementation 1.5x faster

* K20X theoretical bandwidth is 250
GB/s
® Low percent of peak
* Why?




Tools for Profiling

* Profile-driven optimization

® Tools:
* nsight: Visual Studio Edition or Eclipse Edition
® nvvp: NVIDIA Visual Profiler
¢ nvprof: Command-line profiling



Introducing NVVP

Cuda profiling tool
Analyzes performance
Identifies hotspots
Suggests improvements

* Let’s open NVVP

Import profiles
Interpret results




NVVP: Stepl

Block Size

. I Registers/Thread 16
Always lOOk at OCCUpancy fIrSt Shared Memory/Block 0 bytes
Each block is scheduled on an SM vemory - .
Global Load Efficiency  100%
There are 14 SMs on K20X Global Store Efficiency 5 12.5%
Local Memory Overhead 0%
Only 4 blocks! DRAM Utilization % 10.9% (21.55 GB/s)
- Instruction E
B Ottl enec k Branch Divergence Overhead
. Grld Size Total Replay Overhead
.. Shared Memory Replay Overhead
* Most Of the GPU IS Idle Global Memory Replay Overhead
>~ Solutlon Global Cache Replay Overhead

Local Cache Replay Overhead

* Express more parallelism

Achieved i 12.5%

Theoretical L 100%

~timite | Grid

profiles/step1.nvvp



Exercise: Express More Parallelism

® The CPU version parallelizes over
rows and columns i

® Lets do the same on the GPU

* Replace columns loop with an index
calculation
# Change launch configuration to 2D
* blockSize = 32x32 I
® <<<gridDim,blockDim>>>
* dim3(xdim,ydim)
¢ Don’t forget to update both gridDim
and blockDim




Results

* We are now at a 12x speedup over

)

-

the parallel CPU version

But how are we doing overall?
Peak for K20X is 250 GB/s
® ~24% of peak

Why is bandwidth utilization low?

Back to NVVP




NVVP Profile: Step?2

Occupancy is now much better

All SMs have work
DRAM utilization 1s low

* Global store efficiency is low
* Global memory replay overhead is

high
* Bottleneck
®* Uncoalesced stores

Grid Size

Shared Memory/Block 0 bytes

Memory
Global Load EFficienc __100%
gbal Store Efficiency
Local Memory Overhead |
DRAM Utilization | & 35.3% (70.06 GB/3
Instruction |
Branch Divergence Overhead
Total Replay Overhead
Shared Memory Replay Overhead
Clobal Memory Replay Overhead
Global Cache Replay Overheat
Local Cache Replay Overhead
Occypanc
Achieved

ekical

profiles/step2.nvvp



Use NVVP to Find Coalescing Problems

& Analysis 2 . [o Details| B Console|C@ Settings

®* Compile with -lineinfo

Analyze Entire Application

® Analyze kernel (select in timeline) __global _ void gpuTranspose kernel(int rows, int co
Stages [
w| Reset All | |y, Analyze All int 1; int j;

Uncoalesced Global Memory

1 blockIdx.x * blockDim.x + threadIdx.x;
Divergent Branch j = blockIdx.y * blockDim.y + threadIdx.y;
it/ put[i*cols + j] = in[j*cols + i];

Uncoalesced Global Memory Accesses
Global memeory loads and stores have poor access patterns, leading to inefficient use of global memory bandwidth.
Select from the table below to see the source code which generates the inefficient global loads and stores.
Location Description
¥ File: n'|air1.u:'_§
Line: 41 Global Store L2 Transactions/Access =32.0 [ 1048576 L2 transactions for 32768 total executions ]




What 1s an Uncoalesced Global Store?

)

)

Global memory access happens
In transactions of 32 or 128
bytes

Coalesced access:

® A group of 32 contiguous
threads (“warp”) accessing
adjacent words

* Few transactions and high
utilization

Uncoalesced access:

* A warp of 32 threads
accessing scattered words

® Many transactions and low
utilization

Oa B8

|

|

O B8



Memory Coalescing

* When we write column j memory
access pattern is strided i

# Solution
® Read coalesced into shared memory
® Transpose in shared memory
® Write coalesced from shared memory




Transposing with Shared Memory

i ® Read block coalesced
Into shared memory

Global Shared
Memory Memory



Transposing with Shared Memory

i * Read block coalesced
Into shared memory

® Transpose shared
memory indices

Global Shared
Memory Memory



Transposing with Shared Memory

i * Read block_ij
coalesced into shared
memory

® Transpose shared
memory indices

® Write transposed
block to global
memory

Global Shared
Memory Memory



Exercise: Stage Through Shared Memory

* Allocate a static 2D array using _ shared__ keyword

* Read from global to shared memory
Global read indices are unchanged
* Shared write indices use threadldx.{x,y}

® Write from shared to global memory
¢ Global write indices: transpose block
¢ Shared read indices: transpose threads

® Sync between read and write: __ syncthreads()



Results

* We got a small improvement but we
are still low compared to peak

® Back to NVVP




NVVP Profile: Step3

L. ] Duration 128.163 ps
Global Store Efficiency is now 100% [EEEEE | [32321]
Block Size . [32,321]
Global memory replay are much Registers/Thread 10
Shared Memory/Block . 4KB
lower e

Ty

Global Load Efficiency L 100%

* Shared memory replays are much ‘ bl Store EFfcioncy AN
h I g h er LoCativrermenOuerhead i

DRAM Utilization % 37.9% (75.18 GB/fs)
Instruction
Branch Divergence Overhead 0%
* Bottleneck etatReplay Overhead |
i Shared Memory Replay Overhead
. Sh al'ed memo I’y ban k CcO nﬂ | CtS Global Memory Replay Overhead
Global CacheRe ETITe
Local Cache Replay Overhead
Occupancy

Achieved [ B86.2%

Theoretical 100%

profiles/step3.nvvp



Shared Memory Organization

* Organized in 32 independent banks

* Optimal access: all words from different
banks

® Separate banks per thread
¢# Banks can multicast

¢ Multiple words from same bank serialize

Any 1:1 or multicast pattern




Shared Memory: Avoiding Bank Conflicts

¢ Example: 32x32 SMEM array
® Warp accesses a column:

® 32-way bank conflicts (threads in a warp access the same bank)

warps:
0 1 2 31
Accesses along row
Bank O produces 0 bank
Bank 1 conflicts
Accesses along
column produces 32
Bank 31 bank conflicts




Shared Memory: Avoiding Bank Conflicts

¢ Add a column for padding:
& 32x33 SMEM array

® Warp accesses a column:
® 32 different banks, no bank conflicts

warps:
0 1 2 31 padding
Bank O Accesses along row
produces 0 bank
Bank 1 conflicts
Accesses along
Bank 31

column produces O
bank conflicts




Exercise: Fix bank conflicts

# Add padding




Results

* Getting much better

* Back to NVVP




NVVP Profile: Step4

Bank conflicts are fixed
DRAM utilization 1s >50%

Can we do better?

Duration
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
¥ Memory
Global Load Efficiency
Global Store Efficiency
Local Memory Overhear
DRAM Utilization
¥ Instruction
Branch Divergence Overhead
Total Replay Overhead

Shared Memory Replay Overhead
Global Memory Replay Overhead
Global Cache Replay Overhead
Local Cache Replay Overhead

¥ Occupancy

Achieved

Theoretical

90.146 ps
[32,32,1]
[32,32,1]
10

4125 KB

100%
100%

57.1% (113.34 GB/s)

9.1%
0%

0%

86.5%
100%

profiles/step4.nvvp



NVVP Profile: Step4

I . . . . Duration {90,146 ps
DRAM Utilization is still a little low. [ 32
Aim for 70%-80% of peak Blocksize | [32321]
Registers/Thread f10
* Problem: Shared Memory/Block 4.125 KB
¥ Memory
Kepler requires 100+ lines in flight per Global Load Efficiency . 100%
SM to saturate DRAM Global Store Efficiency 100%
Local Memory Overhead %
1 line-in-flight per warp @ 100% DRAM Utilization |
occupancy =64 lines in flight 7 Instruction
Branch Divergence Overhead
. SOIU“O” Total Replay Overhead
Shared Memory Replay Overhead
* Process multiple elements per thread Global Memory Replay Overhead
* Instruction-level parallelism Global Cache Replay Overhead
Local Cache Replay Overhead
® More lines-in-flight ¥ Occupancy |
* Less _ syncthreads overhead Achieved | 86.5%

Theoretical i 100%

* Amortize cost of indexing and thread
launch profiles/step4.nvvp



Exercise: Multiple Elements Per Thread

Change block sizeto 32 x 4
BLOCKY =4
NUM_ELEMS PER THREAD =8
Should the grid size also change?
®* Loop over 8 elements on input
® Update indexing whenever you see threadldx.y and threadDim.y
¢ Loop over 8 elements on output
¢ Update indexing whenever you see threadldx.y and threadDim.y

¢ Unroll all loops using #pragma unroll



NVVP Profile: Step5

80% of peak bandwidth

Occupancy dropped
This is not a problem

* ILP makes up for loss in
occupancy

* In general ILP is as good as high
occupancy

Duration . 56.13ps

Grid Size - [32,32,1]

Block Size - [32.41]

Registers/Thread 24

Shared Memory/Block . 4.125KB
¥ Memory :

Global Load EFficiency | 100%
Global Store Efficiency . 100%

Local Memory Overhead
DRAM Utilization

¥ Instruction
Branch Divergence Overhead
Total Replay Overhead
Shared Memory Replay Overhead
Global Memory Replay Overhead
Global Cache Replay Overhead
Local Cache Replay Overhead

Achieved

poretical

profiles/step5.nvvp



Final Results

* Use NVVP to identify bottlenecks

* Use optimization techniques to
eliminate bottlenecks

* Refer to GTC archives for
complete optimization
techniques

® www.gputechconf.com/gtcnew/on-demand-gtc.php
¢ Search “GPU Performance Analysis and Optimization”



http://www.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

